НЕКОТОРЫЕ ОСОБЕННОСТИ СОБСТВЕННОГО МИКРОВОЛНОВОГО ИЗЛУЧЕНИЯ ЗАБОЛОЧЕННЫХ ТЕРРИТОРИЙ ЗАПАДНО-СИБИРСКОЙ НИЗМЕННОСТИ ПО ЕЖЕДНЕВНЫМ ДАННЫМ СПУТНИКА SMOS

<u>Романов А.Н. (</u>1), Тихонов В.В. (2), Хвостов И.В. (1), Трошкин Д.Н. (1), Уланов П.Н. (1), Боярский Д.А. (2), Шарков Е.А. (2).

(1) Институт водных и экологических проблем СО РАН, Барнаул, Россия (2) Институт космических исследований РАН, Москва, Россия

Актуальность

1. Крупнейшая в мире Западно-Сибирская низменность характеризуется большим количеством болот, расположенных в трех природных зонах (тундре, тайге, лесостепи) и занимающих по разным оценкам площадь от 800 тыс. до 1 млн. кв. километров.

2. Богатейшие запасы нефти, газа, торфа делают Западно-Сибирскую низменность важнейшим регионом России по добыче топливно-энергетических ресурсов.

3. Возникает необходимость дистанционного мониторинга болот для своевременного выявления происходящих с ними изменений. В первую очередь это связано с процессами осушения и переувлажнения болот, вызванными климатическими изменениями.

4. Для дистанционного мониторинга болот могут быть применены методы СВЧрадиометрии с использованием данных микроволновых радиометров, размещенных на искусственных спутниках Земли (SMOS, SMAP и др.). Данные спутника SMOS (продукт L1c) на частоте 1.41 ГГц использовали для оценки пространственного распределения радиояркостных температур подстилающей поверхности.

Данные SMOS (продукт L1C), привязаны к дискретной геодезической сетке DGG ISEA 4H9, состоящей из 2621442 шестиугольных ячеек, покрывающих Земной шар.

Форма радиометрического следа радиометра MIRAS (SMOS) на вертикальной и горизонтальной поляризациях

Спутниковые снимки Landsat использовали для планирования экспедиций, определения мест отбора проб воды.

Полевые измерения: измеряли температуру, отбирали пробы воды, почвы, растительности. Лабораторные измерения диэлектрических характеристик отобранных образцов проводили на лабораторной установке мостового типа.

- Значения радиоизлучательных характеристик откалиброваны в единицах радиояркостных температур (Тя).
- Погрешность определения Тя изменяется от ±3 К в центре до ±6 К на краях полосы захвата, ширина которой 890 км.
- Съемка территории производится на горизонтальной и вертикальной поляризациях в диапазоне углов зондирования от 0 до 55°.
- Разрешающая способность радиометра при рабочих углах зондирования изменяется от 30 до 50 км, при зондировании под углом 42.5° составляет 45 км.

горизонтальная поляризация horizontal polarization

вертикальная поляризация vertical polarization

Примеры сезонной динамики крупнейших болот мира

Болото Пантанал (Южная Америка)

Общая площадь 150-195 тыс.км², это крупнейшая заболоченная территория на планете. Выделены два сезона: засушливый зимний сезон и влажный летний сезон, превращающий Пантанал в огромное озеро-болото.

Динамика радиояркостной температуры поверхности на участке наблюдения DGGID 1239786 [-17,413 с.ш.; -57,469 в.д.]

Болото Судд (Африка)

Выделены сезон дождей и сезон засух. Площадь болота варьирует от 30 тыс. км² (в засуху) до150 тыс. км² в сезон дождей.

Ветланды Западной Сибири

Васюганские болота — одни из самых больших болот в мире, расположены в Западной Сибири, в междуречье Оби и Иртыша, на территории Васюганской равнины, находящейся большей частью в пределах Томской области, и малыми частями — Новосибирской, Омской областей, Ханты-Мансийского АО и севера Тюменской области (Уватский и Тобольский район). Площадь болот 53 тыс. км²

Болота и озера Ханты-Мансийского автономного округа.

Площадь болот - 183,3 тыс.км², площадь озёр – 172,55 тыс. км².

Озеро Чаны (крупнейшее соленое озеро в России). Площадь – 1708 - 2269 км²

Динамика радиояркостной температуры поверхности на участке наблюдения DGGID 4020238 [57,513 с.ш.; 75,575 в.д.]

Динамика радиояркостной температуры поверхности на участке наблюдения DGGID 4019774 [60,765 с.ш.; 65,248 в.д.]

Анализ сезонных вариаций яркостных температур

Сезонная динамика яркостных температур имеет характерный повторяющийся из года в год вид:

1-2 — "Зимнее" плато — период примерно с начала ноября по конец марта, в течение которого яркостные температуры имеют постоянные (в пределах доверительных интервалов) значения около 255 К или обнаруживают слабовыраженный положительный тренд в течение этого периода.

2-3 — «Весеннее таяние» - быстрый (10-30 дней) "спад" до значений около 220 К, вероятно связанный с покрытием большой части подстилающей поверхности жидкой влагой, в результате таяния сезонного снежного покрова, вскрытия рек ото льда. Минимальные значения держатся, как правило, не более 2-5 дней, т.е. отрицательная динамика достаточно резко сменяется положительной. Рост происходит чуть медленнее и не во всех случаях монотонно.

3-4 – «Летний период 1» - в разные годы наблюдается разная динамика Тя(JD), вид которой зависит от вегетационных циклов болотной растительности (точка 4 - максимальное значение Тя, может соответствовать максимальному усыханию заболоченной территории или максимальному развитию болотной растительности и экранированию ею водной поверхности.

4-5 - «Летний период 2» - увядание растительности.

5-1 – «Осенне-зимнее промерзание» болотной толщи. Вид сезонной динамики радиояркостных температур зависит от особенностей промерзания болотной толщи как многослойной системы, состоящей из слоев живой растительности, отмершей растительности и почвы.

Сезонная динамика Тя(JD) болота в «летнеосенний период» может быть связана с изменением диэлектрических и радиоизлучательных характеристик надводной травяной растительности (в результате увядания).

Зависимости показателей преломления (n) и поглощения (к) от влажности болотной растительности (рогоз).

n = 1,4066+ 5,11458 × W, σ = 0,577, R² = 0,997 κ =(-0,0094±0,041)+ 0,97306 × W, σ =0,34, R² =0,97 R is the correlation coefficient, σ is the standard deviation.

Зависимость коэффициента излучения от влажности болотной растительности (рогоз). $\chi = 0,97741 - 0,88627 \times W + 0,44479 \times W^2$, $\sigma = 0,007$, R² =0,997

Сезонная динамика Тя(JD) заболоченной территории также может быть связана с изменением диэлектрических и радиоизлучательных характеристик древесной растительности при пожелтении и опадании листвы.

Зависимости показателей преломления (n) и поглощения (к) от объемной влажности (лист березы)

n = 1,40143 + 5,55163 × W, σ = 0,045, R² = 0,998

 $\kappa = 0,08498 + 0,64314 \times W,$ $\sigma = 0,045, R^2 = 0,941$

Лист	Wv	Rp	Rs
зеленый	0,443	0,7	0,257
желто-зеленый	0,343	0,596	0,253
желтый	0,412	0,646	0,234
лист коричневый	0,129	0,599	0,469

Чановская озерная система (Новосибирская область)

 Чановская озерная система включает в себя крупнейшее в России горько-соленое озеро Чаны и прилегающие к озеру заболоченные и подтопленные территории.

Площадь озера, достигающая
 2269 квадратных километров,
 непостоянна, и в разные периоды
 года может заметно изменяться.

 Циклические колебания уровня воды в озере связаны с климатическими изменениями, вызывающими возникновение периодов повышенной влажности и засухи.

4. На прилегающих к озеру
территориях наблюдаются изменения
почвенно-растительного покрова,
процессы засоления, осолонцевания
и осолодения почв.

Водная поверхность

Почвенный покров и растительность

Солончак с произрастающим на нем солеросом (Salicornia perennans Willd)

На лабораторной установке мостового типа, созданной на основе измерителя разности фаз ФК2-18, измеряли на частоте 1.413 ГГц диэлектрические характеристики образцов воды, засоленной почвы и солелюбивой растительности.

Г – генератор сигналов высокочастотный Г4-78 (1.16-1.78 ГГц), ДМ – делитель мощности согласованный, ЛПД – линия переменной длины, А1, А2, А3 – аттенюаторы согласующие коаксиальные, И – измерительный блок фазометра, К – контейнер для образца, изготовленный в виде коаксиального волновода.

По данным диэлектрических измерений рассчитали регрессионные зависимости χ(W) Солончак (1):

 $\chi = (0.946 \pm 0.003) - (0.69 \pm 0.056) \cdot W - (3.16 \pm 0.30) \cdot W^2 + (4.73 \pm 0.41) \cdot W^3$, R=0.997, σ =0.007, Солерос (2):

 $\chi = (0.999 \pm 0.006) - (0.47 \pm 0.098) \cdot W - (3.65 \pm 0.41) \cdot W^2 + (4.26 \pm 0.48) \cdot W^3$, R=0.996, σ =0.011, Обратные зависимости

Солончак

W = (1.74±0.09) – (5.11±0.44)·χ + (6.25 ± 0.66)·χ² – (2.94 ± 0.32)·χ³, R=0.996, σ=0.007, Солерос

 $W = (1.28 \pm 0.08) - (3.21 \pm 0.38) \cdot \chi + (3.84 \pm 0.58) \cdot \chi^2 - (1.9 \pm 0.28) \cdot \chi^3, R = 0.995, \sigma = 0.010,$

Обобщенная зависимость

 $\chi = (0.984 \pm 0.005) - (1.186 \pm 0.005) \cdot W,$ R = 0.979, $\sigma = 0.03$,

Обратная обобщенная зависимость

$$\begin{split} W &= (0.802 \pm 0.08) - (0.8086 \pm 0.017) \cdot \chi, \\ R &= -0.979, \, \sigma = 0.027, \end{split}$$

TABLE 1. Granulometric Composition and Texture

Percent							
1-0.25	0.25-0.05	0.05- 0.01	0.01- 0.005	0.005- 0.001	<0.001	USD ¹	
4.1	23.22	25.24	21.12	9.64	16.68	Sandy Clay Loam	

TABLE 2. Results Of Chemical Analysis Of SS And SPW Water Extract, [mg/kg]

Sample	Ca ²⁺	Mg ²⁺	Na+	K	Cl-	SO4 ²⁻	F ₂	Br⁻	NH4-	NO ₃ -	NO ₂ -	Amount of salts mg/kg
SS	130±4	145±4	674±23	16,9±0,5	1400± 350	750±188	1,9±0,5	2,7±0,7	4,1±0,1	<0,1	<0,1	3125
SPW	297±9	1362±34	10008± 340	1107±32	20234 ±5058	2078±520	84±21	92±9	518±17	19±5	<0,1	33848

Saline soil (SS), Salicornia perennans Willd (SPW)

Солончак

Солерос

Зависимости показателей преломления (1) и поглощения (2) для солончака и солероса при температуре образца t = 25 ± 1°C.

$$(n,\kappa) = \begin{cases} A1, W = 0, \\ A1 + A2 \cdot W, 0 < W \le W_1, \\ A3 + A4 \cdot W, W_1 < W \le W_2, \\ A5 + A6 \cdot W, W_2 < W \le W_{\max}. \end{cases}$$

Sampla	S	S	SPW				
Sample	Ν	К	n	к			
W	0÷C	0.03	0÷C	0÷0.08			
A1	1.67899	0.03369	1.18458	0.00376			
A2	2.56084	1.41439	4.72697	1.07712			
R	0.88	0.88	0.988	0.97			
σ	0.34	0.2	0.49	0.07			
W	0.03-	÷0.21	0.08÷0.32				
A3	1.52537	-0.14507	1.04094	-0.41895			
A4	A4 6.76797		6.74667	6.38449			
R	R 0.99		0.996	0.98			
σ	0.39	0.35	0.43	0.57			
W	0.21÷0.51		0.32÷0.57				
A5	0.71651	-0.50839	-1.27164	-2.05593			
A6	A6 10.80745		13.83319	11.52528			
R	R 0.995		0.98	0.98			
σ	0.51	0.24	0.73	0.42			

Используем рефракционную модель

$$(n,\kappa) = \sum_{i=1}^{n} (n_{i},\kappa_{i}) \cdot W_{i} \qquad n = \begin{cases} n_{0}, W = 0, \\ n_{0} + (n_{W}^{1} - 1) \cdot W, \ 0 < W \le W_{1} \\ n_{1} + (n_{W}^{2} - 1) \cdot (W - W_{1}), W_{1} < W \le W_{2}, \\ n_{2} + (n_{W}^{3} - 1) \cdot (W - W_{2}), W_{2} < W \le W_{MAX}, \end{cases} \\ \kappa_{0} + \kappa_{W}^{1} \cdot W, \ 0 < W \le W_{1}, \\ \kappa_{1} + \kappa_{W}^{2} \cdot (W - W_{1}), W_{1} < W \le W_{2}, \\ \kappa_{2} + \kappa_{W}^{3} \cdot (W - W_{2}), W_{2} < W \le W_{MAX}, \end{cases}$$

$$n_{1} = n_{0} + (n_{W}^{1} - 1) \cdot W_{1}, \kappa_{1} = \kappa_{0} + \kappa_{W}^{1} \cdot W_{1},$$

$$n_{2} = n_{1} + (n_{W}^{2} - 1) \cdot W_{2}, \kappa_{2} = \kappa_{1} + \kappa_{W}^{2} \cdot W_{2},$$

1)
$$W = W_1$$
:
 $n_W^1 = 1 + (n_1 - n_0)/W_1$
 $\kappa_W^2 = (\kappa_1 - \kappa_0)/W_1$
 $k_W^2 = (\kappa_2 - \kappa_1)/(W_2 - W_1)$
2) $W = W_{MAX}$ (not shown in Fig. 1):
 $n_W^3 = 1 + (n_{MAX} - n_2)/(W_{MAX} - W_2)$
 $\kappa_W^3 = (\kappa_{MAX} - \kappa_2)/(W_{MAX} - W_2)$

	<i>n</i> ₁	κ _l	<i>n</i> ₂	κ2	<i>n</i> ₃	K ₃
SS	1.76	0.08	2.95	0.92	6.23	3.16
SPW	1.56	0.09	3.20	1.62	6.61	4.51
	n_W^1	κ_W^1	n_W^2	κ_W^2	n_W^3	κ_W^3
SS	3.56	1.41	7.62	4.67	11.94	7.50
SPW	5.73	1.08	7.82	6.39	14.65	11.56
σ	0.38	0.31	0.03	0.27	0.19	0.35

выводы:

1. Спутниковые данные:

- Анализ спутниковых данных SMOS, наземных и лабораторных измерений позволяет выявить сезонные изменения микроволнового излучения ветландов.
- Пространственно-временные вариации радиояркостных температур подстилающей поверхности зависят от площадей разных типов поверхности, попадающих в пиксель спутникового радиометра, их радиоизлучательных характеристик, которые, в свою очередь, зависят от температуры и минерализации воды, температуры и влажности почв, характеристик растительности.
- Для болот Западной Сибири выделено четыре временных периода, в каждом из которых зависимости Тя(JD) различаются.

2. Результаты лабораторных измерений диэлектрических характеристик:

- Три категории воды, идентифицированные в SS и SPW, различаются по диэлектрическим свойствам;
- Качественное подобие зависимостей n (W) и к (W) связано с одинаковым составом ионов растворенных минеральных солей во влаге SS и соке растений SPW;
- Различие в зависимостях диэлектрических свойств связанной и свободной воды в SS и SPW обусловлено разной объемной долей связанной и свободной воды, а также разной концентрацией растворенных минеральных солей;
- Для описания зависимостей n (W) и к(W) SS и SPW от объемной доли воды использована рефракционная модель.

СПАСИБО ЗА ВНИМАНИЕ

Исследования проведены в ходе выполнения государственных заданий ИВЭП СО РАН, ИКИ РАН, при финансовой поддержке РФФИ (проекты № 18-05-00753 "Поиск, экспериментальное и теоретическое обоснование дистанционных радиофизических маркеров гидролого-климатических изменений в Северной Евразии на основе ежедневных данных спутникового микроволнового зондирования для прогнозирования опасных природных явлений", № 20-05-00198-а «Спутниковая микроволновая радиометрия эстуариев российской Арктики – анализ гидрологического режима в период ледостава»), темы «Мониторинг» гос. регистрация № 01.20.0.2.00164.